Piecewise Function Approximation and Vertex Partitioning Schemes for Multi-dividing Ontology Algorithm in Auc Criterion Setting (II)
نویسندگان
چکیده
منابع مشابه
tight frame approximation for multi-frames and super-frames
در این پایان نامه یک مولد برای چند قاب یا ابر قاب تولید شده تحت عمل نمایش یکانی تصویر برای گروه های شمارش پذیر گسسته بررسی خواهد شد. مثال هایی از این قاب ها چند قاب های گابور، ابرقاب های گابور و قاب هایی برای زیرفضاهای انتقال پایاست. نشان می دهیم که مولد چند قاب تنک نرمال شده (ابرقاب) یکتا وجود دارد به طوری که مینیمم فاصله را از ان دارد. همچنین مسایل مشابه برای قاب های دوگان مطرح شده و برخی ...
15 صفحه اولPartial Multi-dividing Ontology Learning Algorithm
As an effective data representation, storage, management, calculation and analysis model, ontology has been attracted more and more attention by scholars and been applied to various engineering disciplines. In the background of big data, the ontology is expected to increase the amount of data information, and the structure of its corresponding ontology graph has become complicated. Thus, it dem...
متن کاملNew Multi-dividing Ontology Learning Algorithm Using Special Loss Functions
As an important data structure model, ontology has become one of the core contents in information science. Multi-dividing ontology algorithm combines the advantages of graph structure and learning algorithms proved to have high efficiency. In this paper, in terms of multi-dividing proper loss functions, we propose new multi-dividing ontology learning algorithms for similarity measure and ontolo...
متن کاملApproximation Schemes for Partitioning: Convex Decomposition and Surface Approximation
We revisit two NP-hard geometric partitioning problems – convex decomposition and surface approximation. Building on recent developments in geometric separators, we present quasi-polynomial time algorithms for these problems with improved approximation guarantees. ∗[email protected] †[email protected] ‡[email protected] 1 ar X iv :1 40 4. 37 76 v1 [ cs .C G ] 1 ...
متن کاملFunction Approximation using Dividing Features
Automated agents designed to learn strategies using Markov decision processes on a continuous state space usually need to approximate the value function associated with the environment. Traditionally, as described in Sutton and Barto in [1], this is often done using a fixed number of rectangular features tiled across the state space, possibly distributed into multiple layers. As an improvement ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Sciences
سال: 2013
ISSN: 1812-5654
DOI: 10.3923/jas.2013.3257.3262